
Building QuickTime-
Savvy Applications

Session 601

Building QuickTime-
Savvy Applications

Ian Ritchie
QuickTime Engineering

QuickTime?

QuickTime ToolboxQuickTime Toolbox

ComponentComponent

ICMICMStreamingStreaming StdStd
CompressionCompression StdSoundStdSound SeqGrabSeqGrab

ControlControlMediaMediaDataData
FileFile

URLURL

MemoryMemory

……

VideoVideo

AudioAudio

StreamStream

VRVR

LinearLinear

NoneNone

VRVR

……

……

‘‘imcoimco’’ ‘‘scomscom’’ ‘‘clokclok’’‘‘imdcimdc’’

‘‘eateat’’ ‘‘spitspit’’

‘‘sdecsdec’’

‘‘voutvout’’ ‘‘vdigvdig’’ ……

QuickTime Overview

Topics Covered
•Movies 101
•Images Import/Export
•Compression
•Data Handlers
•Video Processing
•QTVR

•Interactivity
•Mac OS X, Carbon
•Windows
•Carbon Movie Control
•Cocoa
•QuickTime Broadcaster

Movies 101

Brad Ford and Jon Summers
QuickTime Engineering

What Is a Movie?

Movie Is a Media Catalog

Media Data
 "Samples"

Movie
 Catalog

Tracks

Media Data
 "Samples"

Media Data
 "Samples"

Edit
List

Sample
 Durations

Sample
 Table

Media
Descriptions

Data
References

Demo
Movie Editing

Where Does Movie
Data Come From?
•Local storage

• Disk file (not necessarily a “.mov” file)
•Remote source

• URL specified http:// rtsp://
•Memory

• Handle, Pointer or Resource
•Different pieces can come from different places

Working With Movies
•.EnterMovies();

• Opening a movie
• Tasking QuickTime
• Movie playback
• Editing
• Saving

•Applications should not call ExitMovies();

DataReference
•Abstracted location specifier
•Handle to a data structure
•DataRefType specifies accessor component
•DataReference & DataRefType ~ DataHandler
•Local file DataReference is an AliasHandle

QTNewAlias(&fsSpec, &dataRef, true);
DataRefType ‘alis’ ~~ AliasDataHandler

Loading a Movie
NewMovieFromDataRef()

general form of NewMovieFromFile()

err = NewMovieFromDataRef (&movie, flags, 0,

dataRef, dataRefType,);

Do not need to call OpenMovieFile or CloseMovieFile

Demo
 FRONTBASE Data Handler

Movie Controllers
err = NewMovieFromDataRef (&movie, flags, 0,

dataRef, dataRefType);
mc = NewMovieController (movie, &rect, mcFlags);

 // Run event loop. Task QuickTime with
MCIsPlayerEvent()
// Your MovieController communicates with the Movie

// When you’re finished with a movie...
DisposeMovieController (mc); // remove controller first!
DisposeMovie (movie);

MovieController ≠
MovieController Bar

•The Movie Controller
bar is a convenience
interface

•You can attach a Movie
Controller to your movie
and gain all of its
functionality without
showing the bar

Why Use Movie Controllers?
•They simplify control:

MCDoAction(mc, mcActionPrerollAndPlay,

(void *)myFixedRate);
MCDoAction(mc, mcActionGoToTime,

(void *)aTimeRecord);
MCDoAction(mc, mcSetKeysEnabled,

(void *)true);
MCDoAction(mc, mcActionLinkToURL,

(void *)myURLHandle);

Some Things Will Not Work
Without Movie Controllers
•Interactivity
•QuickTime VR
•Streaming

curTime = MCGetCurrentTime (mc, &theTimeScale);

err = MCGetControllerInfo (mc, &myFlags);

if (myFlags & mcInfoIsPlaying)

// the movie is currently playing

They Let You Query Your Movie
•Get movie info

Action Filters
MCSetActionFilter(mc, myActionFilterUPP);

Boolean myActionFilterCallback(

MovieController mc, short action, void *params)

{

 if(action == mcActionMovieClick) {

(eventPtr)->what = nullEvent; // kill click

 return true; // I’ve handled this action

}

 else

 return false; // handle this as usual

}

Tasking With Movie Controllers
•Give your movie processing time
•WaitNextEvent-based apps should call

MCIsPlayerEvent()

• New in QT6: QTGetTimeUntilNextTask()

• More on this later

Support Movie Editing

MCEnableEditing(mc, true);

switch (editCmd) {

 case kCut: MCCut (mc); break;

 case kCopy: MCCopy (mc); break;

 case kPaste: MCPaste (mc, srcMovie); break;

 case kClear: MCClear (mc); break;

 case kUndo: MCUndo (mc); break;

 case kTrim: MCTrimMovieSegmentmc); break;

 case kAdd: MCAddMovieSegment (mc, srcMovie, scaled);

}

Adding Media Samples
•Adding compressed media data samples

BeginMediaEdits()

AddMediaSample()

EndMediaEdits ()

InsertMediaIntoTrack ()

New Movie From Scratch
CreateMovieStorage (dataRef, dataRefType,

creator, 0, kDataHCanRead | kDataHCanWrite,
&dataHandler, &movie);

// add tracks and media

AddMovieToStorage (movie, dataHandler);
CloseMovieStorage (dataHandler);
DisposeMovie (movie);

Support Long Unicode Names
•File Manager Based
FSSpec and file references

OpenMovieFile, CloseMovieFile
CreateMovieFile, DeleteMovieFie
AddMovieResource, UpdateMovieResource
PutMovieIntoDataFork64

•Movie Storage API
DataReference and DataHandler

OpenMovieStorage, CloseMovieStorage
CreateMovieStorage, DeleteMovieStorage
AddMovieToStorage, UpdateMovieInStorage
PutMovieIntoStorage

Saving the Movie
•Create or update catalog in storage

err = AddMovieToStorage (movie, dataHandler);

err = UpdateMovieInStorage (movie, dataHandler);

•Flattening
err = FlattenMovieDataToDataRef (movie, flattenMovieFlags,

dataRef, dataRefType, creator, 0, createMovieFlags);

•Exporting
err = ConvertMovieToFile (movie, (Track)nil,

(FSSpec*)nil, fileType, creator, 0, nil,

exportMovieFlags, (Component)nil);

Video Processing

Tom Dowdy
QuickTime Engineering

More Video
•Capture
•Compression
•Import
•Export

Capture
•Sequence grabber

• Audio
• Video

•Source: HackTV

Compression
•Video processing

• Other
• Live video
• Stored movie
• Movie playback
• Learn more: Session 602

Import/Export
•Open file types
•Save as file types
•“Print to Video”
•UI or API to configure

Still Images

Sam Bushell
QuickTime Engineering

Still Images in QuickTime
•Graphics Importers
•Graphics Exporters
•Easy to use
•Opt-in for more powerful features

Drawing Still Image Files

•Draws BMP, FlashPix, GIF, JPEG, MacPaint, PDF
(on Mac OS X), Photoshop, PICT, PNG, QTIF,
TGA, TIFF, SGI, and others

GetGraphicsImporterForDataRef(
dataRef, dataRefType, &gi);

GraphicsImportSetDestRect(gi, &rect);

GraphicsImportDraw(gi);

CloseComponent(gi);

Graphics Importers
Also Support…
•Scale, rotate, perspective (improved in QT6)
•Transfer modes (blend, alpha composition)
•Clipping
•Reading metadata (e.g., Exif)
•Multiple images per file

(Photoshop layers; TIFF pages; Exif thumbnails)
•Extensible by third parties (e.g., DICOM)

Writing Still Image Files
OpenADefaultComponent(

GraphicsExportComponentType,
kQTFileTypeJPEG, &ge);

GraphicsExportSetInputGWorld(ge, gw);

GraphicsExportSetOutputDataReference(ge,
dataRef, dataRefType);

GraphicsExportDoExport(ge, nil);

CloseComponent(ge);

•Can write BMP, JPEG, MacPaint, Photoshop,
PICT, PNG, QTIF, TGA, TIFF, SGI, and others

Graphics Exporters Also…
•Provide user dialogs for format-specific options
•Store metadata (Exif)
•Write image thumbnails (Exif)
•Extensible by third parties (e.g., PhotoJazz)

Demo

http://developer.apple.com/samplecode/
Sample_Code/QuickTime/Basics/

ImproveYourImage.htm

Working With Interactive Movies

Tim Monroe
QuickTime Engineering

Interactive Movies
•Respond to mouse, button, and keyboard events
•These events may trigger actions
•Two interactive track types

• QuickTime VR tracks
• Flash tracks

Interactive Movies
•Two “scriptable” track types

• Text tracks
• Sprite tracks

•You can add other interactive media types

Demo
Interactive Movies

Interactive Movies
•Must be associated with a movie controller
•Wired objects can send actions to other objects

in a movie or even in another movie

Demo
Intermovie Communication

Skinned Movies
•A skinned movie is a movie with a custom

window shape
•No window frame is drawn and no controller

bar is visible
•Allow the content creator to specify the

entire look and feel of a movie, but…
• ...must provide a means of controlling

movie (e.g., a wired sprite controller)

Demo
Skinned Movies

Writing Cross-Platform
QuickTime Applications

QuickTime and Windows
•QuickTime 3.0 provided identical APIs

on Macintosh and Windows
•“Macintosh” data types are available

on Windows, along with functions to create
and dispose of instances of those types:
myBuffer = NewHandleClear(1024);

…

if (myBuffer != NULL)

DisposeHandle(myBuffer);

QuickTime Media Layer
•Provides support for those portions of the

Macintosh OS and UI Toolbox needed by
QuickTime, including:

• Memory Manager
• File Manager
• Gestalt Manager
• Control Manager
• Window Manager
• Dialog Manager
• Resource Manager

“Write once, deliver many…”

QuickTime Media Layer
•QTML is not a general-purpose porting layer
•QTML is a special-purpose porting layer;

 it is designed to allow developers to move
QuickTime code to Windows quickly and easily

Porting Issues
•Namespace conflicts
•Endianness of multibyte data
•Resource data conversion
•Modeless dialog boxes

Namespace Conflicts
•Windows APIs overlap with some existing

Mac APIs
•Mac APIs renamed to avoid this conflict:

MacShowWindow

MacSetPort

MacInsertMenu

MacOffsetRect

0x12 0x34 0x56 0x78 0x78 0x56 0x34 0x12

Big-endian byte ordering Little-endian byte orderingBig Endian Little Endian

Endian Issues
•Data in QuickTime movie files is big-endian;

Windows is little-endian

•In general, you work with native-endian data:
• Parameters to QuickTime APIs
• Data returned by QuickTime APIs

myUserData = GetMovieUserData(myMovie);

if (myUserData != NULL) {

GetUserDataItem(myUserData, &myPoint, sizeof(Point),

FOUR_CHAR_CODE(‘WLOC’), 0);

myPoint.v = EndianS16_BtoN(myPoint.v);

 myPoint.h = EndianS16_BtoN(myPoint.h);

}

Endian Issues
•Sometimes data is returned in big-endian format

Endian Issues
•Byte swapping necessary only for multi-byte data

• But, not required for C or Pascal strings
•Byte swapping is necessary only when data

is transferred between RAM and some external
container (e.g., a file)

•Use the macros!

Resource Data
•QTML supports Resource Manager
•On Windows, you need to explicitly open your

application’s resource fork:

myLength = GetModuleFileName(NULL, myName, MAX_PATH);

NativePathNameToFSSpec(myName, &mySpec,

kFullNativePath);

gAppResFile = FSpOpenResFile(& mySpec, fsRdWrPerm)

UseResFile(gAppResFile);

Resource Data
•Resource Manager returns native-endian

data for known resource types
•For custom resources, you can write

a resource flipper and install it with the
Resource Manager:

RegisterResourceEndianFilter

•…Or you can just flip the data yourself
in your code

Modeless Dialogs
•On Windows, we usually do not call

IsDialogEvent or DialogSelect
•Instead, install a callback function to handle

Windows messages for a modeless dialog box
SetModelessDialogCallbackProc

•…Or, consider using native Windows APIs
for complex dialog boxes

myID = (**myMenuHdl).menuID; // pre-Carbon

myID = GetMenuID(myMenuHdl); // Carbon

// Windows or pre-Carbon Mac code

#if !ACCESSOR_CALLS_ARE_FUNCTIONS

#define GetMenuID(mHdl) (** mHdl).menuID

#endif

QuickTime and Carbon
•Carbon is a porting layer
•Some Carbon changes will affect our

Windows code:

Tasking QuickTime

Greg Chapman
QuickTime Engineering

Tasking QuickTime
•“Inside Macintosh: QuickTime” says

you should task QuickTime
regularly…
as often as possible…

•There is a lot of folklore about this

There Has Got
to Be a

Better Way!

New in QuickTime 6
•An API you can use to find out when QuickTime

needs to be tasked next
• WaitNextEvent-based apps can call it to get

the number of Ticks to pass to WNE
• CarbonEventLoopTimer-based apps can call

it to schedule a timer’s next fire time
• Working sample code available

But You Should
Not Have

 To Do This

Higher Level Abstractions
on Mac OS X
•For Cocoa:

• NSMovieView (smarter with QT6)
•For Carbon:

• MovieControl (new in QT6)

Carbon MovieControl

•Always creates a movie controller
(can be hidden)

•Handles events
• Mouse and keyboard events
• Can participate in Edit menu and

edit command handling
•The app can install event handlers, too

•Manages the playback and manipulation
of QuickTime Movies

Carbon MovieControl
CreateMovieControl(theWindow, nil, theMovie, 0, &theControl);

RunApplicationEventLoop();

•That’s all you have to do…

•Working sample code available

Demo
Carbon MovieControl

QuickTime Broadcaster

Adrian Baerlocher
QuickTime Engineering

QuickTime Broadcaster
•Cocoa Application using QuickTime
•Classes encapsulate QuickTime

functional groups
• Sequence Grabber
• Standard Compression
• Broadcast APIs

Demo
QuickTime Broadcaster

Roadmap
Room A2

Wed., 2:00pm
Room A2

Wed., 2:00pm

602 QuickTime for Video-
Intensive Apps

Room A2
Wed., 3:30pm

Room A2
Wed., 3:30pm

603 Media Integration
With QuickTime

Room A2
Wed., 5:00pm

Room A2
Wed., 5:00pm

604 Delivering Content
via Interactive QuickTime

Room A2
Fri., 9:00am

Room A2
Fri., 9:00am

605 Developing QuickTime
Components

Roadmap
Room A2

Fri., 2:00pm
Room A2

Fri., 2:00pm

606 QuickTime for the Web

Room A2
Fri., 3:30pm

Room A2
Fri., 3:30pm

607 QuickTime and MPEG-4:
A Technical Overview

Civic
Thurs., 2:00pm

Civic
Thurs., 2:00pm

812 QuickTime Streaming Server 4

Room J1
Fri., 10:30am

Room J1
Fri., 10:30am

FF010 QuickTime

Who to Contact
Developer Technical Support
dts@apple.com

Jeff Lowe
QuickTime Technology Evangelist
jefflowe@apple.com

http://developer.apple.com/wwdc2002/urls.html

For More Information
•QuickTime online documentation

developer.apple.com/quicktime

•QuickTime sample code
developer.apple.com/samplecode/Sample_Code/QuickTime

Reminder

The QuickTime Engineering Team
Is Holding a “Hands-On Lab” Everyday

From 1:00–4:00pm in Room G…Stop By!

© 2001 and TM Apple Computer, Inc. All rights reserved.

© 2001 and TM Apple Computer, Inc. All rights reserved.

© 2001 and TM Apple Computer, Inc. All rights reserved.

